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Abstract

So called small-world networks – clustered networks
with small diameters – are thought to be prevalent in na-
ture, especially appearing in people’s social interactions.
Many models exist for this phenomenon, with some of
the most recent explaining how it is possible to find
short routes between nodes in such networks. Search-
ing for such routes, however, always depends on nodes
knowing what their and their neighbors positions are
relative to the destination. In real applications where
one may wish to search a small-world network, such as
peer-to-peer computer networks, this cannot always be
assumed to be true.

We propose and explore a method of routing that does
not depend on such knowledge, and which can be im-
plemented in a completely distributed way without any
global elements. The Markov Chain Monte-Carlo based
algorithm takes only a graph as input, and requires no
further information about the nodes themselves. The
proposed method is tested against simulated and real
world data.

1 Introduction

The modern view of the so called “small-world phe-
nomenon” can be dated back to the famous experiments
by Stanley Milgram in the 1960s [15]. Milgram exper-
imented with people’s ability to find routes to a desti-
nation within the social network of the American popu-
lation. He concluded that people were remarkably effi-
cient at finding such routes, even towards a destination
on the other side of the country. More recent studies
using the Internet have come to the same conclusion,
see [6].

Models to explain why graphs develop a small diame-
ter ([19], [4], [17]), have been around for some times.
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Generally, these models specify the mixing of a struc-
tured base graph, such a as grid, and random “short-
cuts” edges between nodes. However, it was not until
Jon Kleinberg’s work in 2000 [11] that a mathematical
model was developed for how efficient routing can take
place in such networks. Kleinberg showed that the pos-
sibility of efficient routing depends on a balance between
the proportion of shortcut edges of different lengths with
respect to coordinates in the base grid. Under a specific
distribution, where the frequency of edges of different
lengths decreases inverse proportionally to the length,
simple greedy routing (always walking towards the des-
tination) can find routes in O(log2(n)) steps on average,
where n is the size of the graph.

1.1 Motivation Kleinberg’s result is sharp in the
sense that graphs where edges are chosen from a dif-
ferent distribution are shown not to allow for efficient
searching. However, the small-world experiments seem
to show that greedy-like routing is efficient in the world’s
social network. This indicates that some element of
Kleinberg’s model is present in the real world. In [12]
and [18] this is motivated by reason of people’s group
memberships1. Several dynamic processes by which net-
works can evolve to achieve a similar edge distribution
have also been proposed recently, for example, in [5], as
well as in forthcoming work by this author [16].

However, in Kleinberg’s search algorithm, the individual
nodes are assumed to be aware of their own coordinates
as well as those of their neighbors and the destination
node. In the case of real world data, it may be difficult
to identify what these coordinates are. In fact the
participant nodes may be unaware of anything but
their immediate neighborhood and thus oblivious of
the global structure of the graph, and, importantly
for this work, of geographic (or other) coordinates.
For example, in peer-to-peer overlay networks on the
Internet, one may wish to automatically find routes
without relying on information about the local user,

1Roughly: When a group is twice as large, people in it are half
as likely to know each other.



let alone his neighbors or the routes target. In such
a situation, how can we search for short paths from one
node to another?

1.2 Contribution With this in mind, this paper at-
tempts to return to Milgram’s original problem of find-
ing paths between people in social networks. Starting
from an unmarked shortcut graph and no other infor-
mation on the coordinates, we attempt to fit it against
Kleinberg’s model so as to make efficient searches pos-
sible. Taking as hypothesis that the graph was gen-
erated by applying Kleinberg’s distribution model to a
base graph with co-ordinate information, we attempt
to recover the embedding. We approach this as a sta-
tistical estimation problem, with the configuration of
positions in the grid assigned to each node as a (multi–
dimensional) unknown parameter. With a good esti-
mate for this embedding, it is possible to make greedy
routing work without knowing the original positions of
the nodes when the graph was generated. We employ
a Markov Chain Monte-Carlo (MCMC) technique for
fitting the positions.

We summarize our contributions as follows:

1. We give an MCMC algorithm to generate an em-
bedding of a given graph into a one or two dimen-
sional (toric) grid which is tuned to the distribu-
tions of Kleinberg’s model.

2. This method is tested using artificially generated
and controlled data: graphs generated according
to the ideal model in one and two dimensions. The
method is demonstrated to work quite well.

3. It is then applied to real social network data, taken
from the “web of trust” of the users of an email
cryptography program.

4. Finally, it is observed that the method used can be
fully distributed, working only with local knowl-
edge at each vertex. This suggests an application
to routing in decentralized networks of peers that
only connect directly to their own trusted friends
in the network. Such networks, known as Friend-
to-Friend networks of Darknets, have so far been
limited to communication only in small cliques, and
may become much more useful if global routing is
made possible.

5. Our algorithm can thus be viewed also as a general
purpose routing algorithm on arbitrary networks.
It is tailored to “small world” networks, but ap-
pears to also work quite well for a more general
class of graphs.

1.3 Previous Work Different methods of searching
social networks and similar graphs have been discussed
in previous work. In [3] a method is proposed for search-
ing so called “power-law networks”, either by a random
walk or by targeting searches at nodes with high degree.
Because such graphs have a highly skewed degree distri-
bution, where a small set of nodes are connected to al-
most everyone, the methods are found to work well. The
first author of that paper and a co-author recently inves-
tigated the problem of searching social networks in [2].
There they found that power-law methods did not work
well, and instead attempted to use Kleinberg’s model by
trying to identify people’s positions in some base graph
based on their characteristics (where they live, work,
etc). This was found to work well on a network with
a canonical, highly structured base graph (employees of
Hewlett Packard) but less well on the social network
of students at Stanford University. Similarly Liben-
Nowell et. al. [13] performed greedy searches using the
town names as locations in the network of writers on
the website “LiveJournal”. They claim positive results,
but consider searches successful when the same town as
the desired target is reached: a considerably easier task
than routing all the way.

In [20] the authors attempt to find methods to search a
network of references between scientific authors. They
mention Kleinberg’s model, but state:

“The topology of referral networks is similar to
a two-dimensional lattice, but in our settings
there is no global information about the posi-
tion of the target, and hence it is not possible
to determine whether a move is toward or away
from the target”.

It is the necessity of having such information that we
attempt to overcome here.

2 Kleinberg’s Model

Kleinberg’s small-world model, like that of Watts and
Strogatz [19] which preceded it, starts with a base graph
of local connections, onto which a random graph of
shortcut edges (long range contacts) is added. In its
most basic form, one starts with a k-dimensional square
lattice as the base network, and then adds q directed
random edges at each node, selected so that each such
shortcut edge from x points to y with probability:

`(x, y) =
1

d(x, y)kHk(n)

where d denotes lattice distance in the base graph, n the
size of the network, and Hk is a normalizing constant.



Kleinberg showed that in this case so-called greedy
routing finds a path from any point to any other in,
on average, O(log2(n)) steps. Greedy routing means
always picking the neighbor (either through a shortcut
or the base graph) which is closest to the destination, in
terms of the lattice distance d, as the next step. Since
routing within the base graph is permitted, the path
strictly approaches the destination, and the same point
cannot be visited twice.

In order to make the model more applicable to the real
world, it is desirable to use the base graph only as a
distance function between nodes, and thus only use the
shortcut edges when routing. The necessity of a strictly
approaching path existing then disappears, and we are
left with the possibility of coming to a dead-end node
which has no neighbor closer to the destination than
itself. Kleinberg himself dealt with this issue in [12],
working on non-geographical models, and there used q
(node degree) equal to κ log2(n) for a constant κ. In
this case it is rather easy to see that κ can be chosen so
as to make the probability that any node in the network
is dead-end for a given query is arbitrarily small for all
sizes n.

Actually, it suffices to keep the probability that a
dead-end is encountered in any given route small. By
approximate calculations one can see that this should
hold if q = Θ(log(n) log log(n))2. In practice we find
that scaling the number of links with log(n) preserves
the number of paths that do not encounter a dead end
for all Kleinberg model graphs we have simulated.

3 The Problem

The problem we are faced with here is this: given a
network, presumed to be generated as the shortcuts in
Kleinberg’s model (in some number of dimensions), but
without any information on the position of the nodes,
can we find a good way to embed the network into
a base grid so as to make the routing between them
possible? This may be viewed as a parametric statistical
estimation problem. The embedding is thus seen as
the model’s parameter, and the data set is a single
realization of the model.

Seen from another perspective, we are attempting to
find an algorithmic approach to answering the funda-
mental question of greedy routing: which of my neigh-

2Roughly: The probability that a link will not be dead-end to
a query decreases with (log n)−1. With c log(n) log log(n) links
per node, the probability that a given node is a dead-end is thus
bounded by (log n)θ. θ can be made large by choosing a large
c, thus making the probability of encountering a node in the
O(log n)2 nodes encountered in a walk small.

bors is closest to the destination? In Kleinberg’s model
this is given, since each node has a prescribed position,
but where graphs of this type occur in real life, that is
not necessarily the case. The appeal of the approach
described below is that we can attempt to answer the
question using no data other than the graph of long con-
nections itself, meaning that we use the clustering of the
graph to answer the question of who belongs near whom.

Our approach is as follows: we assign positions to
the nodes according to the a-posteriori distribution of
the positions, given that the edges present had been
assigned according to Kleinberg’s model. Since long
edges occur with a small probability in the model, this
will tend to favor positions so that there are few long
edges, and many short ones.

4 Statement

Let V be a set of nodes. Let φ be a function from V
onto G, a finite (and possibly toric) square lattice in k
dimensions3. φ is the configuration of positions assigned
! to the nodes in a base graph G. Let d denote graph
distance in G. Thus for x, y ∈ V , d(φ(x), φ(y)) denotes
the distance between respective positions in the lattice.

Let E denote a set of edges between points in V , and
let them be numbered 1, . . . , m. If we assume that the
edges are chosen according to the Kleinberg’s model,
with one end fixed to a particular node and the other
chosen randomly, then the probability of a particular E
depends on the distance its edges cover with respect to
φ and G. In particular, if we let xj and yj denote the
start and end point, respectively, of edge j, then:

(4.1) Pr(E|φ) =
m∏

i=1

1
d(φ(xi), φ(yi))kHG

where HG is a normalizing constant.

When seen as a function of φ, (4.1) is the likelihood
function of a certain configuration having been used to
generate the graph. The most straightforward manner
in which to estimate φ from a given realization E is
to choose the maximum likelihood estimate, that is
the configuration φ̂ which maximizes (4.1). Clearly,
this is the same as configuration which minimizes the
product (or, equivalently, log sum) of the edge distances.
Explicitly finding φ̂ is clearly a difficult problem: in
one dimension it has been proven to be NP-complete
[7], and there is little reason to believe that higher

3In our experiments below, we focus mostly on the one
dimensional case, with some two dimensional results provided for
comparisson purposes.



dimensions will be easier. There may be hope in turning
to stochastic optimization techniques.

Another option, which we have chosen to explore here,
is to use a Bayesian approach. If we see φ as a random
quantity chosen with some probability distribution from
the set of all possible such configurations (in other
words, as a parameter in the Bayesian tradition), we
can write:

(4.2) Pr(φ|E) =
Pr(E|φ) Pr(φ)

Pr(E)

which is the a-posteriori distribution of the node po-
sitions, having observed a particular set of edges E.
Instead of estimating the maximum likelihood config-
uration, we will try to assign configurations according
to this distribution.

4.1 Metropolis-Hastings Algorithm The
Metropolis-Hastings algorithm is a remarkable algo-
rithm used in the field of Markov Chain Monte-Carlo. It
allows one, given a certain distribution π on a set S, to
construct a Markov chain on S with π as its stationary
distribution. While simulating a known distribution
might not seem extraordinary, Metropolis-Hastings has
many properties that make it useful in broad range of
applications.

The algorithm starts with a selection kernel α : S×S 7→
[0, 1]. This assigns, for every state s, a distribution
α(s, r) of states which may be selected next. The next
state, r, is selected according to this distribution, and
then accepted with a probability β(s, r) given by a
certain formula of α and π. If the state is accepted, it
becomes the next value of the chain, otherwise the chain
stays in s for another time-step. If r is the proposed
state, then the formula is given by:

β(s, r) = min
(

1,
π(r)α(r, s)
π(s)α(s, r)

)
.

The Markov chain thus defined, with transition Matrix
P (s, r) = α(s, r)β(s, r) if s 6= r (and the appropriate
row normalizing value if s = r), is irreducible if α is,
and can quite easily be shown to have π as its stationary
distribution, see [9], [10]. The mixing properties of
the Markov chain depend on α, but beyond that the
selection kernel can be chosen as need be.

4.2 MCMC on the Positions Metropolis-Hastings
can be applied to our present problem, with the aim
of constructing a chain on the set of position functions,
S = GV , that has (4.2) as its stationary distribution 4.
Let α be a selection kernel on S, and φ2 be chosen by α

from φ1. It follows that, if we let α(φ1, φ2) = α(φ2, φ1),
and assume a uniform a-priori distribution, then:

β(φ1, φ2) = min
(

1,
Pr(E|φ2)
Pr(E|φ1)

)

= min

(
1,

m∏

i=1

d(φ1(xi), φ1(yi))k

d(φ2(xi), φ2(yi))k

)

Let φ2 be an x, y-switch of φ1 if φ1(x) = φ2(y), φ1(y) =
φ2(x), and φ1(z) = φ2(z) for all z 6= x, y. In such cases,
the above simplifies by cancellation to:
(4.3)

β(φ1, φ2) = min


1,

∏

i∈E(x∨y)

d(φ1(xi), φ1(yi))k

d(φ2(xi), φ2(yi))k




where E(x ∨ y) denotes the edges connected to x or y.
This function depends only on edge information that is
local to x and y.

We are now free to choose a symmetric selection kernel
according to our wishes. The most direct choice is to
choose x and y randomly and then to select φ2 as the
x, y-switch of φ1. This is equivalent to the kernel:

(4.4) α(φ1, φ2) =

{
1/(n +

(
n
2

)
) if x, y-switch

0 otherwise.

The Markov chain on S with transition matrix

P (φ1, φ2) = α(φ1, φ2)β(φ1, φ2)

with α and β given by (4.4) and (4.3) respectively, is
thus the Metropolis-Hastings chain with (4.2) as its sta-
tionary distribution. Starting from any position func-
tion, it eventually converges to the sought a-posteriori
distribution.

A problem with the uniform selection kernel is that we
are attempting to find a completely distributed solution
to our problem, but there is no distributed way of
picking two nodes uniformly at random. In practice,
we instead start a short random walk at x, and use as
y the node where the walk terminates. This requires
no central element. It is difficult to specify the kernel
of selection technique explicitely, but we find it more or
less equivalent to the one above. See Section 8 below.

4Another way of looking at this is as an example of Simulated
Annealing, which uses the Metropolis-Hastings method to try to
minimize an energy function. In this case, the energy function is
just the log sum of the edge distances, and the β coefficient is 1.



5 Experiments

In order to test the viability of the Markov Chain
Monte-Carlo method, we test the chain on several types
of simulated data. Working with the one-dimensional
case, where the base graph is a circle, we simulate net-
works of different sizes according to Kleinberg’s model,
by creating the shortcuts through random matching of
nodes, and with the probability of shortcuts occurring
inverse squarely proportional to their length. We then
study the resulting configuration in several ways, de-
pending on whether the base graph is recreated after
the experiment, and whether, in case it is not, we stop
when reaching a dead-end node of the type described
above.

We also study the algorithm in two dimensions, by
simulating data on a grid according to Kleinberg’s
model, and using the appropriate Markov chain for this
case. Finally, we study some real life data sets of social
networks, to try to determine if the method can be
applied to find routes between real people.

The simulator used was implemented in C on Linux and
Unix based systems. Source code, as well as the data
files and the plots for all the experiments, can be found
at:

http://www.math.chalmers.se/~ossa/swroute/

6 Experimental Methodology

6.1 One-Dimensional Case We generated different
graphs of the size n = 1000 ∗ 2r, for r between 0
and 7. The base graph is taken to be a ring of n
points. Each node is then given 3 log2 n random edges to
other nodes. Since all edges are undirected, the actual
mean degree is 6 log2 n, with some variation above the
base value. This somewhat arbitrary degree is chosen
because it keeps the probability that a route never hits
a dead end low when the edges are chosen according to
Kleinberg’s model. Edges are sent randomly clockwise
or counterclockwise, and have length between 1 and n/2,
distributed according to three different models.

1. Kleinberg’s model, where the probability that the
edge has length d is proportional to 1/d.

2. A model with edges selected uniformly at random
between nodes.

3. A model where the probability of an edge having
length d is proportional to 1/d2.

Both the latter cases are non-optimal: the uniform
case represents “too little clustering”, while the inverse
square case represents “too much”. In Kleinberg’s
result, the two types of graphs are shown not to have
log-polynomial search times in different ways: too much
clustering means not enough long edges to quickly
advance to our destination, too little means not enough
edges that take even closer when we are near it.

Performance on the graphs can be measured in three
different ways as well. In all cases, we choose two
nodes uniformly, and attempt to find a greedy route
between them by always selecting the neighbor closest
(in terms of the circular distance) to the destination.
The difference is when we encounter a dead end – that
is to say a node that has no neighbor closer to the
destination then itself. In this case we have the following
choices on how to proceed:

1. We can terminate the query, and label it as unsuc-
cessful.

2. We can continue the query, selecting the best node
even if it is further from the destination. In this
case it becomes important that we avoid loops, so
we never revisit a node.

3. We can use a “local connection” to skip to a
neighbor in the base from the current node, in the
direction of the destination.

For the second case to be practical, it is necessary
that we limit the number of steps a query can take.
We have placed this limit as (log2 n)2, at which point
we terminate and mark the query unsuccessful. This
value is of course highly arbitrary (except in order),
and always represents a tradeoff between success rate
and the mean steps taken by successful queries. This
makes such results rather difficult to analyze, but it is
included for being the most realistic option, in the sense
that if one was using this to try to search in a real social
network, the third case is unlikely to be an option, and
giving up, as in the first case, is unnecessary.

We look at each result for the graph with the positions
as they were when it was generated, after shuffling the
positions randomly, and finally with positions generated
by a running the Markov Chain for 6000n iterations.
It would, of course, be ideal to be able to base such
a number off a theoretical bound on the mixing time,
but we do not have any such results at this time.
The number has been chosen by experimentation, but
also for practical purposes: for large n the numerical
complexity makes it difficult to simulate larger orders
of iterations in practical time-scales.



Due to computational limitations, the data presented
is based off only one simulation at every size of the
graph. However, at least for graphs of limited size, the
variance in the important qualities has been seen to be
small, so we feel that the results are still indicative of
larger trends. The relatively regular behavior of the
data presented below strengthens this assessment.

After shuffling and when we continue at dead ends,
the situation is equivalent to a random walk, since the
greedy routing gains from the node positions. Searching
by random walk has actually been recommended in
several papers ([3], [8]), so this gives the possibility of
comparing our results to that.

6.2 Two Dimensional Case We also simulate
Kleinberg’s model in two dimensions, generating differ-
ent graphs of the size n = 1024∗4r, for r between 0 and
3. A toric grid as the base graph (that is to say, each
line is closed into a loop). Shortcuts were chosen with
the vertex degrees as above, and with ideal distribution
where the probability that two nodes are connected de-
creasing inverse squared with distance (the probability
of an edge having length d is still proportional to 1/d,
but as d increases there are more choices of nodes at
that distance). We do this to compare the algorithm in
this setting to that in the one dimensional case.

We also try, for graphs with long range connections
generated against a two dimensional base graph, to use
the algorithm in one dimension, and vice versa. This is
to ask how crucial the dimension of the base grid is to
Kleinberg’s model: whether the essential characteristics
needed for routing carry over between dimensions. Any
conclusion on the subject, of course, is subject to the
question of the performance of the algorithm.

6.3 Real World Data Finally, we test the method
on a real graph of social data. The graph is the
“web of trust” of the email cryptography tool Pretty
Good Privacy (PGP) [1]. In order to verify that the
person who you are encrypting a message for really
is the intended recipient, and that the sender really
is who he claims to be, PGP has a system where
users cryptographically sign each others keys, thereby
vouching for the key’s authenticity. The graph in
question is thus a sample of people that know each other
“in real life” (that is outside the Internet), since the
veracity of a key can only be measured through face to
face contact.

We do not look at the complete web of trust, which con-
tained about 23,000 users, but only at smaller subsets.
The reason for this is two-fold. Firstly, the whole net-

work is not a connected component. Secondly a lot of
the nodes in the graph are in fact leaves, or have only
one or two vertices. Under such conditions, the algo-
rithm (or any greedy routing for that matter) cannot
be expected to work.

These were created by starting a single user as the new
graph’s only vertex, and recursively growing the graph
in the following manner. If Gn is the new graph at step
n:

1. Let ∂Gn be the vertices with at least one edge into
Gn, but who are not in Gn themselves.

2. Select a node x randomly from those members of
∂Gn who have the greatest number of edges into
Gn.

3. Let Gn+1 be the graph induced by the vertices of
Gn and x.

4. Repeat until Gn+1 is of the desired size.

This procedure is motivated by allowing us to get a
connected, dense, “local” subgraph to study. It is closest
we can come to the case where, having access to the base
graph, one uses a only the nodes in a particular section
of it and the shortcuts between them.

Daily copies of the web of trust graph are available at
the following URL:

http://www.lysator.liu.se/~jc/wotsap/

7 Experimental Results and Analysis

7.1 One Dimensional Case Experimental results
in the one dimensional case were good in most, but
not all, cases. Some of the simulated results can be
seen in 1 through 8. Lines marked as “start” show
the values with the graphs as they were generated,
“random” show the values when the positions have been
reassigned randomly (this was not done for the random
matchings case, as there is no difference from the start),
and “restored” show the values after our algorithm has
been used to optimize the positions.

In the ideal graph model, when the original graph is
known to allow log polynomial routing, we can see that
the algorithm works well in restoring the query lengths.
In particular, Figure 3, where queries have been able to
use the base graph, shows nearly identical performance
before and after restoration.

In the cases where queries cannot use the local connec-
tions, we see that proportion of queries that are suc-
cessful is a much harder property to restore than the
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Figure 1: The success-rate of queries when terminating
at dead-end nodes, on a graph generated by the ideal
model.
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Figure 2: Mean number of steps of successful queries
when terminating at dead-end nodes, on a graph gener-
ated by the ideal model.
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Figure 3: Mean number of steps of successful queries
when allowed to use local connections, on a graph
generated by the ideal model.

 0

 20

 40

 60

 80

 100

 120

 140

 1000  10000  100000

M
ea

n 
S

te
ps

Network Size

random
start

restored

Figure 4: Mean number of steps of successful queries
when terminating after (log2(n))2 steps, on a graph
generated by the ideal model.
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Figure 5: Mean number of steps of successful queries
when allowed to use local connections, on a graph
generated by random matchings.
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Figure 6: Mean number of steps of successful queries
when terminating after (log2(n))2 steps, on a graph
generated by random matchings.
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Figure 7: The success-rate of queries when terminating
at dead-end nodes, on a graph generated by random
matchings.
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Figure 8: The success-rate of queries when terminat-
ing at dead-end nodes, on a graph generated with con-
nection probabilities inverse square proportional to the
length.
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Figure 9: Matching Kleinberg’s model in 2 dimensions
against a graph generated according to it. Success rate
when failing at dead-end nodes.

number of steps taken. Figure 1 shows this: for large
graphs the number of queries that never encounter a
dead-end falls dramatically. A plausible cause for this
is that it is easy for the algorithm to place the nodes in
the approximately right place, which is sufficient for the
edges to have approximately the necessary distribution,
but a good success rate depends on nodes being exactly
by those neighbors to which they have a lot edges.

Along with the ideal data, two non-ideal cases were ex-
amined. In the first case, where the long range con-
nections were added randomly, the algorithm performs
surprisingly well. At least with regard to the number
of steps, we can see a considerable improvement at all
sizes tested. See in particular Figures 6 and 5. However,
it is impossible for the success rate to be sustained for
large networks when the base graph is not used - in this
case there simply is no clustering in the graph - and as
expected the number of successful queries does fall as n
grows (Figure 7.

The other non-ideal case, that of too much clustering,
was the one that faired the worst. Even though this
leads to lots of short connections, which one would
believe could keep the success rate up, this was not
found to be the case. Both the success rate and the
mean number of steps of the successful queries were
not found to be significantly improved by the algorithm
in this case. The results in Figure 8 if particularly
depressing in this regard. It should be noted that it has
been shown [14] that graphs generated in this way are
not small-world graphs - their diameter is polynomial
in their size, so there is no reason to believe that they
can work well for this type of application.
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Figure 10: Matching Kleinberg’s model in 2 dimensions
against a graph generated according to it. Mean number
of steps of successful queries when failing at dead-end
nodes.
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Figure 11: Matching Kleinberg’s model in 2 dimensions
against a graph generated according to it. Mean number
of steps of queries when they are allowed to use local
connections.
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Figure 12: The target function of the optimization (log
sum of shortcut distances) as the algorithm progresses.
The graphs have 10000 nodes with edges generated
using the ideal model. The values are normalized by
dividing by the log sum of the original graph: it can be
seen that we come much closer to restoring this value in
1 dimension.

7.2 Two Dimensional Case The algorithm was
also simulated with a pure two dimensional model. In
general, the algorithm does not perform as well as in
the one dimensional case, but it performs better than
against the one dimensional algorithm did on the graphs
generated from non-ideal models. See Figures 9 to 11
for some of the data.

It seems that the algorithm proposed here simply does
not function as well in the two-dimensional case. In
Figure 12 the sum of the logarithms of the shortcut
distances for a graph is plotted as the optimization is
run for a very large number of iterations. It indicates
that results in two-dimensions cannot be fixed by simply
running more iterations, in fact, it seems like it fails to
converge to one completely.

Graphs generated according to the two dimensional
model were also given to the one dimensional algorithm,
and vice versa. We found that data from either model
was best analyzed by fitting it against a base graph of
the same dimension - but the two dimensional method
actually did slightly better on one-dimensional data
than its own. For example at a network size of 4096,
we were able to restore a success rate of 0.670 when
failing at dead-ends using the two dimensional method
for one dimensional data, but only 0.650 on data from
the two dimensional model. This indicates that the
worse performance in two dimensions may be largely
due to Kleinberg’s model in higher dimensions being
more difficult to fit correctly.

7.3 Real World Data We treated the real world
data in the same way as the simulated graphs. 2000
and 4000 vertex subgraphs were generated using the
procedure defined above, the nodes were given random
positions in a base graph, and then 6000n iterations of
the Metropolis-Hastings algorithm was performed. We
tried embedding the graph both in the one dimensional
case (circle) and two (torus). In one dimension, the
results were as follows:

Size 2000 4000
Mean degree 64.6 46.4
F Success 0.609 0.341
F Steps 2.99 3.24
C Succ 0.981 0.798
C Steps 13.4 26.0
LC Steps 4.58 7.21

Here “F Success/Steps” denotes the values when we
fail upon hitting a dead end, “C Succ/Steps” when we
continue and “LC steps” is the mean number of steps
for queries that use the local connections at dead ends.

The data was also tested using two-dimensional coordi-
nates and distance. The results are rather similar, with
some of the tests performing a little bit better, and some
(notably the success rate when failing on dead ends)
considerably worse.

Size 2000 4000
F Success 0.494 0.323
F Steps 2.706 3.100
C Succ 0.984 0.874
C Steps 13.116 22.468
LC Steps 3.920 5.331

It perhaps surprising that using two dimensions does
not work better, since one would expect the greater
freedom of the two dimensional assignment to fit better
with the real dynamics of social networks (people are,
after all, not actually one a circle). The trend was
similar with three-dimensional coordinates, which led to
success rates of 0.42 and 0.26 respectively for the large
and small graphs when failing at dead-ends, but similar
results to the others when continuing. As can be seen
from simulations above, the algorithm does not seem to
perform very well in general in higher dimensions, and
this may well be the culprit.5

5There is a general perception that the two-dimensional case
represents reality, since peoples geographical whereabouts are
two-dimensional. We find this reasoning somewhat specious. The
true metric of what makes two people closer (that is, more likely
to know one another) is probably much more complicated than



The two thousand node case has about the same degree
as the simulated data from the graphs above, so we can
compare the performance. From this we can see that the
“web of trust” does not nearly match the data from the
ideal model in any category. It does, however, seem to
show better performance than the uniform matchings in
some cases - most notably the crucial criteria of success
rate when dropping at dead ends.

To look at the 4000 nodes case, the mean degree is
considerably less than the experiments presented below,
and it the results are unsurprisingly worse. In this case
however, the dataset does have a lot of nodes with only a
few neighbors, and it is easy to understand it is difficult
for the algorithm to place those correctly.

At first glance, these results may seem rather negative,
but we believe there is cause for cautious optimism. For
one thing, success rates when searching in real social
networks have always been rather low. In [13], when
routing using actual geographic data, only 13% of the
queries were successful. They used a considerably larger
and less dense graph than ours, but on the other hand
they required only that the query would reach the same
town as the target. [2] showed similar results when
attempting to route among university students. Real
world Milgram type experiments have never had high
success rates either: Milgram originally got only around
20% of his queries through to the destination, and a
more recent replication of the experiment using the
Internet [6] had as few as 1.5% of queries succeed.

Moreover, there have not been, to the authors knowl-
edge, any previously suggested methods for routing
when giving nothing but a graph. Methods suggested
earlier for searching in such situations have been to ei-
ther walk randomly, or send queries to nodes of high
degree. With this in mind, even limited success may
find practical applications.

8 Distributed Implementation and Practical
Applications

The proposed model can easily be implemented in a
distributed fashion. The selection kernel used in the
simulations above is not decentralized, in that it involves
picking two nodes x and y uniformly from the set.
However, the alternative method is that nodes start
random walks of some length at random times, and

just geography (the author of this article is, for instance, perhaps
more likely to know somebody working in his field in New Zealand,
than a random person a town or two away). In any case, there is
a trade-off between the realism of a certain base graph, and how
well the optimization seems to function, which may well motivate
less realistic choices.

then propose to switch with the node at which the
walk terminates. Simulating this with random walks
of length log2(n)/2 (the log scaling motivated by the
presumed log scaling of the graphs diameter) did not
perform measurably worse in simulations than a uniform
choice (nor on the collected data in the last section)6.
For example, in a graph of 64,000 nodes generated with
the ideal distribution, we get(with the tests as described
above):

Test Success Rate Mean Steps
Fail 0.668 4.059

Continue 0.996 6.039
Base Graph 1.0 4.33

Once the nodes x and y have established contact (pre-
sumably via a communication tunnel through other
nodes), they require only local data in order to calcu-
late the value in (4.3) and decide whether to switch
positions. The amount of network traffic for this would
be relatively large, but not prohibitively so.

In a fully decentralized setting, the algorithm could be
run with the nodes independently joining the network,
and connecting to their neighbors in the shortcut graph.
They then choose a position randomly from a contin-
uum, and start initiating exchange queries at random
intervals. It is hard to say when such a system could
terminate, but nodes could, for example, start increas-
ing the intervals between exchange queries after they
have been in the network long. As long as some switch-
ing is going on, of course, a nodes position would not be
static, but at any particular time they may be reachable.

The perhaps most direct application for this kind of
process, when the base graph is a social network be-
tween people, is an overlay network on the Internet,
where friends connect only to each other, and then wish
to be able to communicate with people throughout the
network. Such networks, because they are difficult to
analyze, have been called “Darknets”, and sometimes
also “Friend-to-Friend” (F2F) networks.

9 Conclusion

We have approached a largely unexplored question
regarding how to apply small-world models to actually
find greedy paths when only a graph is presented. The
method we have chosen to explore is a direct application
of the well known Metropolis-Hastings algorithm, and

6The most direct decentralized method, that nodes only ever
switch positions with their neighbors, did not work well in
simulation.



it yields satisfactory results in many cases. While not
always able to restore the desired behavior, it leads to
better search performance than can be expected from
simpler methods like random searches.

Much work remains to be done in the area. The
algorithm depends, at its heart, on selecting nodes who
attempt to switch positions with each other in the base
graph. Currently the nodes that attempt to switch are
chosen uniformly at random, but better performance
should be possible with smarter choice of whom to
exchange with. Something closer to the Gibbs sampler,
where the selection kernel is the distribution of the sites
being updated, conditioned on the current value of those
that are not, might perhaps yield better results.

Taking a step back, one also needs to evaluate other
methods of stochastic optimization, to see if they can
be applicable and yield a better result. No other such
method, to the author’s knowledge, applies as directly
to the situation as the Metropolis-Hastings/simulated
annealing approach used here, but it may be possible to
adapt other types of evolutionary methods to it.

Also, all the methods explored here are based on the
geographic models that Kleinberg used in his original
small-world paper [11]. His later work on the dynamics
of information [12] (and also [18]), revisited the problem
with hierarchical models, and finally a group based
abstraction covering both. It is possible to apply the
same techniques discussed below to the other models,
and it is an interesting question (that goes to the heart
of how social networks are formed) whether the results
would be better for real world data.

The final question, whether this can be used successfully
to route in real life social networks is not conclusively
answered. The results on the limited datasets we have
tried have shown that while it does work to some
respect, the results are far from what could be hoped for.
Attempting to apply this method, or any derivations
thereof, to other real life social networks is an important
future task.
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